

[1]  P. P. Altermatt, A. Schenk, F. Geelhaar, and G. Heiser, "Reassessment of the intrinsic carrier density in crystalline silicon in view of bandgap narrowing," J. Appl. Phys., vol. 93, no. 3, p. 1598, Feb. 2003. 
[2]  A. B. Sproul and M. A. Green, "Intrinsic carrier concentration and minoritycarrier mobility of silicon from 77 to 300 K," J. Appl. Phys., vol. 73, no. 3, p. 1214, Feb. 1993. 
[3]  M. A. Green, "Intrinsic concentration, effective densities of states, and effective mass in silicon," J. Appl. Phys., vol. 67, no. 6, p. 2944, Mar. 1990. 
[4]  A. Schenk, "Finitetemperature full randomphase approximation model of band gap narrowing for silicon device simulation," J. Appl. Phys., vol. 84, no. 7, p. 3684, 1998. 
[5]  D. Yan and A. Cuevas, "Empirical determination of the energy band gap narrowing in highly doped n+ silicon," J. Appl. Phys., vol. 114, no. 4, p. 044508, 2013. 
[6]  D. Yan and A. Cuevas, "Empirical determination of the energy band gap narrowing in p+ silicon heavily doped with boron," J. Appl. Phys., vol. 116, no. 19, p. 194505, Nov. 2014. 
[7]  D. B. M. Klaassen, "A unified mobility model for device simulation—I. Model equations and concentration dependence," Solid. State. Electron., vol. 35, no. 7, pp. 953–959, 1992. 
[8]  D. B. M. Klaassen, "A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime," Solid. State. Electron., vol. 35, no. 7, pp. 961–967, 1992. 
[9]  F. Schindler, M. Forster, J. Broisch, J. Schön, J. Giesecke, S. Rein, W. Warta, and M. C. Schubert, "Towards a unified lowfield model for carrier mobilities in crystalline silicon," Sol. Energy Mater. Sol. Cells, vol. 131, pp. 92–99, Dec. 2014. 
[10]  A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, "Improved quantitative description of Auger recombination in crystalline silicon," Phys. Rev. B, vol. 86, no. 16, p. 165202, Oct. 2012. 
[11]  P. P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, and E. Daub, "Injection dependence of spontaneous radiative recombination in cSi: experiment, theoretical analysis, and simulation," NUSOD ’05. Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices, 2005. pp. 47–48, 2005. 
[12]  M. J. Kerr and A. Cuevas, "General parameterization of Auger recombination in crystalline silicon," J. Appl. Phys., vol. 91, no. 4, pp. 2473–2480, Feb. 2002. 
[13]  P. P. Altermatt, A. Schenk, and G. Heiser, "A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si:P," J. Appl. Phys., vol. 100, no. 11, p. 113714, 2006. 
[14]  P. P. Altermatt, A. Schenk, B. Schmithüsen, and G. Heiser, "A simulation model for the density of states and for incomplete ionization in crystalline silicon. II. Investigation of Si:As and Si:B and usage in device simulation," J. Appl. Phys., vol. 100, no. 11, p. 113715, 2006. 
[15]  P. P. Altermatt, J. O. Schumacher, A. Cuevas, M. J. Kerr, S. W. Glunz, R. R. King, G. Heiser, and A. Schenk, "Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and selfconsistent material parameters," J. Appl. Phys., vol. 92, no. 6, p. 3187, Aug. 2002. 
[16]  P. Van Halen and D. L. Pulfrey, "Accurate, short series approximations to Fermi–Dirac integrals of order −1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2," J. Appl. Phys., vol. 57, no. 12, p. 5271, 1985. 
[17]  H. M. Antia, "Rational Function Approximations for FermiDirac Integrals," Astrophys. J. Suppl., vol. 84, pp. 101–108, 1993. 